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Abstract. Iron (II) complexes of 1-alkyl-2-(arylazo)imidazoles (p-R-C6H4-N=N-
C3H2NN-1-R′, R = H (a), Me (b), Cl (c) and R′ = Me (1/3), Et (2/4) have been 
synthesized and formulated as tris-chelates .)RFe(Raai 2

3
+′  They are characterized by 

microanalytical, conductance, UV-Vis, IR, magnetic (polycrystalline state) data. The 
complexes are low spin in character, 6

2gt  (Fe(II)) configurations. 
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1. Introduction 

Arylazoheterocycles and their chemistry of transition and non-transition metals have been 
explored for more than two decades.1 Owing to their pH-response, photoactivity, light 
electron communication, stabilization of low valent metal oxidation state, exhibition of 
serial redox states of complexes, isolation of anion radicals, metal-ion specific solid-
phase extracting phenomena, anticancer medicine etc. different groups of researchers1–48 
have tried to design newer azoheterocycles and their metal complexes and to explore 
their properties. We have also been engaged for the last few years in trying to enrich this 
field of chemistry.  
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 We have designed two new classes of arylazoheterocycles: 1-alkyl-2-(arylazo)imid-
azoles30–40 and 2-(arylazo)pyrimidines.41–44 Emphasis is laid on 2-(arylazo)imidazoles 
because of biological importance of imidazole49,50 and synthetic simplicity over other 
azoheterocycles. In continuation of our comprehensive studies on the coordinating 
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RaaiR′,  R = H (a), Me (b), Cl (c) 
R′ = Me (1), CH2CH3 (2) 
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properties of 1-alkyl-2-(arylazo)imidazoles (RaaiR′, 1) R′ = Me (1), Et (2) this paper 
describes the synthesis, spectroscopic characterization and redox properties of a series of 
new iron(II) complexes.  

2. Experimental 

2.1 Materials 

All reagents were of analytical grade and were used without further purification. 1-Alkyl-
2-(arylazo)imidazoles (RaaiR′) were synthesized and characterized as per reported 
procedure.30,31 Solvents (MeOH, MeCN for electrochemistry) were purified by known 
methods.32–34 

2.2 Analytical measurements 

Microanalytical data (C, H, N) were collected using a Perkin–Elmer 2400 CHN analyser. 
Iron analysis was carried out by AAS studies.51 Molar conductance of the complexes 
were recorded on a direct reading Systronic 304 model conductivity meter using 10–3 M 
solutions. Magnetic susceptibilities were measured by the vibrating sample 155 
magnetometer at 298 K. IR and UV-Vis spectra were recorded on Jasco FTIR model 420 
and Jasco UV/Vis/NIR model V-570 spectrophotometers. The electrochemistry of the 
complexes have been examined by cyclic voltammetry with EG and G PARC 
electrochemistry equipment at Pt-disk working electrode in CH2Cl2–MeOH (1 : 1, v/v). 
Pt-wire auxiliary electrode and potentials are expressed with reference to the potential of 
SCE. Cyclic voltammograms of the complexes were drawn within the potential range 
+1⋅5 to –1⋅5 V vs SCE. 

2.3 Synthesis of complexes 

Reaction condition has been set up following previously reported Fe(II)-complexes of 2-
(arylazo) pyridines.1 Synthesis of a representative complex is detailed below. 
 
2.3a Iron (II) complexes, [Fe(RaaiR′)3]I2 (3, 4) [Fe(HaaiMe)3]I2 (3a): An aqueous 
methanolic solution containing FeSO4, 7H2O (0⋅07 g, 0⋅25 mmol) and HaaiMe (0⋅14 g, 
0⋅75 mmol) was warmed and to this solution concentrated KI solution was added. The 
solution was stirred vigorously under N2 atmosphere for 3 h and cooled in a refrigerator 
to 5–10°C; green crystals were deposited.  
 They were collected by filtration, washed with cold water, and MeOH and finally by 
Et2O. It was dried in vacuo over CaCl2. Yield, 0⋅15 g, 68%. 
 All other complexes were prepared following identical procedure and the yield was 
varied from 65–70%. 

3. Results and discussion 

3.1 Synthesis and formulation 

The ligands, RaaiR′, belong to the unsymmetric N, N′-chelating system. The donor 
centres N(imidazole) and N(azo) are denoted by N and N′ respectively. From an aqueous 
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solution of FeSO4.7H2O and RaaiR′ in methanol in 1 : 3 mole ratio in presence of excess 
of KI, we have isolated green coloured crystalline products of composition 
[Fe(RaaiR′)3]I2 (3,4). Addition of saturated solution of NaClO4/NH4PF6 also affords 
complexes of the same composition [Fe(RaaiR′)3][(ClO4)2/(PF6)2]. The perchlorate salts, 
[Fe(RaaiR′)3](ClO4)2 are relatively less stable in solution and slowly change from green 
to orange yellow compared to PF6

– and I – salts. The commercially available PF6-salts, 
NH4PF6/KPF6 are expensive, hence we have examined the properties of complexes with 
iodide salts, [Fe(RaaiR′)3]I2. Microanalytical data support the composition of the 
complexes. The molar conductance measurement (ΛM = 140–170 Ω–1 cm–1) suggests 1 : 2 
electrolyte nature of the complexes. The complexes are diamagnetic and support low spin 

6
2gt  electronic configuration.  

3.2 IR spectra 

The most plausible assignments of the IR bands useful for establishing the coordination 
modes of the title complexes have been compared with free ligand values.37 The most 
significant difference has been observed in the azoimine function. The ν(C=N) and 
ν(N=N) appear at 1580–1600 and 1380–1390 cm–1 in Fe(II)-complexes and are shifted to 
lower frequency by 20–50 cm–1 compared to free ligand values.30,31 This is in support of 
the π-acidic character of the azoimine group, while Fe(II) shows π-back donation. This is 
common with complexes of azoimidazoles in higher congeners of group VIII, ruthenium 
and osmium, of iron.32–36 ν(Fe-N) may appear at 320–330 cm–1 which is absent in the free 
ligand spectra. 

3.3 Absorption spectra 

UV-Vis spectral studies of the complexes exhibit transition at lower than 400 nm 
corresponding to intramolecular n → π* and π → π* charge transfer transitions (table 1). 
Intense absorption bands (ε ~ 104) appear in the range 420–455 for the complexes which 
may be assigned to d(Fe) → π* (ligand) charge transfer transitions. A broad weak band 
(ε = 270–700 M–1 cm–1) is observed at 620–690 nm.  

3.4 Cyclic voltammetry 

Cyclic voltammetric data are given in table 2. [Fe(RaaiR′)3]I2 shows two redox responses 
at positive to SCE. One of them at higher positive potential M

2/1(E  = 0⋅8–0⋅9 V vs SCE) 
exhibits cathodic peak on scan reversal while the second response at lower potential (Epc 
0⋅6 V) does not show reasonable Epc on scan reversal (figure 1). The quasireversibility of 
voltammogram at 0⋅8–0⋅9 V is reflected in peak-to-peak separation (∆Ep > 120 mV). 
There are two redox active centres that may be oxidized: they are Fe(II) and I –. To assign 
the redox responses we draw a cyclic voltammogram of [Fe(MeaaiMe)3](PF6)2 under 
identical experimental condition which does not show anodic response at 0⋅6 V and 
shows only quasireversible redox couple at 0⋅8–0⋅9 V. The latter couple has been assigned 
to the Fe(III)/Fe(II) couple (1), and the EPa at 0⋅6 V corresponds to ½ I2/I – reaction (2). 
 

[Fe(RaaiR′)3]
3+ + e  [Fe(RaaiR′)3]

2+, (1) 
 

½  I2 + e → I  –. (2) 
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Table 1. Microanalyticala and UV-Visb spectra data. 

 Found (calcd.) (%)  
 

Compound  C H  N  Fe  λmax/nm (10–3 ε/dm3 mol–1 cm–1) 
 

[Fe(HaaiMe)3]I2 (3a) 41⋅51 3⋅48  19⋅41  6⋅7 622 (0⋅708), 422 (6⋅82)c, 
  (41⋅48)  (3⋅45)  (19⋅36)  (6⋅43) 358 (8⋅768), 302 (9⋅388),  
      226 (17⋅98) 
[Fe(MeaaiMe)3]I2 (3b) 43⋅43  3⋅52  18⋅24  6⋅18 626 (0⋅518), 420 (9⋅35)c, 
  (43⋅53)  (3⋅95)  (18⋅46)  (6⋅13) 384 (12⋅78)c, 354 (11⋅00),  
      294 (7⋅07), 234 (12⋅86)  
[Fe(ClaaiMe)3]I2 (3c) 37⋅12  2⋅98  17⋅47  5⋅92 690 (0⋅586), 418 (9⋅265)c, 
  (37⋅01)  (2⋅77)  (17⋅27)  (5⋅74) 378 (3⋅516)c, 368 (35⋅56),  
     284 (4⋅96)c, 242 (13⋅65)c 
[Fe(HaaiEt)3]I2 (4a) 43⋅24  4⋅1  18⋅35  6⋅15 624 (3⋅89), 446 (3⋅17), 
  (43⋅53)  (3⋅96)  (18⋅47)  (6⋅13) 420 (5⋅85)c, 374 (11⋅56),  
     294 (8⋅426) 
[Fe(MeaaiEt)3]I2 (4b) 45⋅18  4⋅12  17⋅74  6⋅1 624 (3⋅374), 424 (7⋅51)c, 
  (45⋅39)  (4⋅41)  (17⋅65)  (5⋅86) 380 (12⋅712), 374 (12⋅651),  
     294 (6⋅537) 
[Fe(ClaaiEt)3]I2 (4c) 39⋅11  3⋅41  16⋅71  5⋅7 643 (0⋅265), 450 (4⋅54), 
 (39⋅02)  (3⋅25)  (16⋅56)  (5⋅50) 382 (42⋅53)c, 372 (43⋅79), 
     288 (6⋅507)c, 242 (13⋅93), 
      226 (20⋅617) 

aCalculated values are in parentheses; bsolvent MeCN; cshoulder 
 
 

Table 2. Cyclic voltammetrica data. 

Compound E1/2[Fe(III)/Fe(II)] (V) (∆Ep, mV) Ligand reductions (V) 
 

[Fe(HaaiMe)3]I2 (3a) 0⋅878 (120) – 0⋅40 (110), – 0⋅73 (120) –1⋅18 (160) 
[Fe(MeaaiMe)3]I2 (3b) 0⋅815 (125) – 0⋅48 (110), – 0⋅81 (130) –1⋅26 (140) 
[Fe(ClaaiMe)3]I2 (3c) 0⋅805 (75) – 0⋅70 (140), – 0⋅40 (130) –1⋅10 (175) 
[Fe(HaaiEt)3]I2 (4a) 0⋅842 (85) – 0⋅44 (130), – 0⋅78 (140) – 0⋅916 (130) 
[Fe(MeaaiEt)3]I2 (4b) 0⋅788 (80) – 0⋅52 (130), – 0⋅88 (140) –1⋅38 (165) 
[Fe(ClaaiEt)3]I2 (4c) 0⋅896 (90) – 0⋅42 (120), – 0⋅75 (125) –1⋅13 (140) 

aSolvent MeCN; Pt-disk working electrode for 3, 4; reference SCE; supporting electrolyte 
[Bu4N][ClO4]. E1/2 = 0⋅5 (Epa + Epc), V; ∆Ep = (Epa – Epc), mV, Epa = anodic peak potential; 
Epc = cathodic peak potential 
 
 
Owing to charge transfer between I – and [Fe(RaaiR′)3]

2+ in the ionic association and 
solvation effect, ½ I2/I – oxidation couple may be shifted to higher potential values 
compared to standard reported potential values.54 The one-electron nature of the redox 
process in (1) is supported by the iPa/iPc (iPa = anodic peak current and iPc = cathodic peak 
current) which varies from 0⋅9–1⋅05 and on the comparing current height of [Fe(CN)6]

3–/ 
[Fe(CN)6]

4– couple. 
 There are three redox couples that appear at negative values to SCE and are due to 
reductions of the ligand (figure 1). Arylazoimidazoles usually accommodate two 
electrons at LUMO which is mostly azo in character. These three redox responses are due 
to azo–/azo redox reaction of three-coordinated RaaiR′.32–36 Other three reductions were 
not observable because of 
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Figure 1. Cyclic voltammogram of [Fe(HaaiMe)3]I2 (3a) in MeCN. 
 

[Fe(RaaiR′)3]
2+ + e  [Fe(RaaiR′)2(RaaiR′–)]+, (3) 

[Fe(RaaiR′)2(RaaiR′–)]+ + e  [Fe(RaaiR′)(RaaiR′–)2], (4) 

[Fe(RaaiR′)(RaaiR′–)2] + e  [Fe(RaaiR′–)3]
–. (5) 

The solvent cut-off region appears near –1⋅5 V. They certainly need more negative 
potential since electron are accommodated at SOMO which feels repulsion by incoming 
electron(s). Redox couples are systematically affected by substituents R and are linearly 
related to the Hammett σ. 

4. Conclusions 

This work describes the coordination chemistry of iron(II) with the 1-alkyl-2-
(arylazo)imidazole ligand which contains the azoimine (–N=N–C=N–) function. The 
complexes have been synthesized and characterized by microanalytical, spectral, 
electrochemical and magnetic study.  
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